

Description

The PJ71 series is a set of three-terminal low power high voltage regulators implemented in CMOS technology. They allow input voltages as high as 24V. They are available with several fixed output voltages ranging from 3.0V to 5.0V. Because of the low power dissipation, PJ71 series are widely used in a variety of equipment such as audio device, video device, communication device and so on.

Features

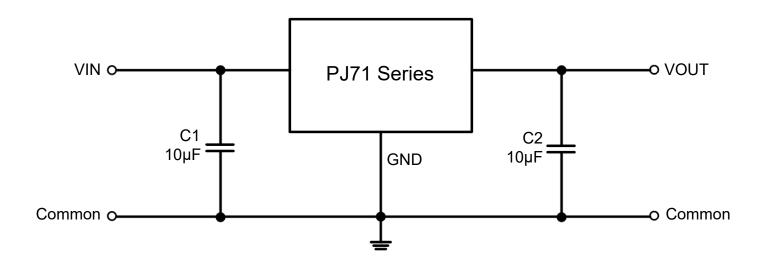
Low Quiescent Current: 4uA

High Input Voltage Rating: Up to 24V

Output Current: 30mA(Typ.)

Low Dropout : 100mV(Typ.) @ 1mA

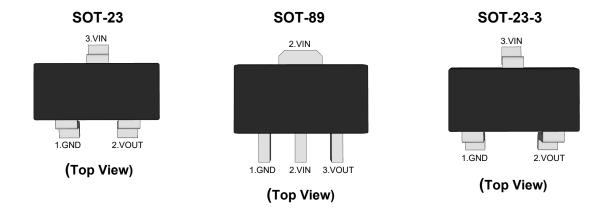
Fixed Output Voltages: 3.0V,3.3V,3.6V,4.4V,5.0V


Low Power Consumption

Available Packages: SOT-23、SOT-23-3、SOT-89

Applications

- Battery-Powered Equipment
- Communication Equipment
- Audio/Video Equipment


Typical Application Circuit

www.pingjingsemi.com Revision: 3.1 Jul-2023

Pin Distribution

Functional Pin Description

Pin Name	Pin Function	
GND	Ground	
VOUT	Output Voltage	
VIN	Power Input Voltage	

2/9

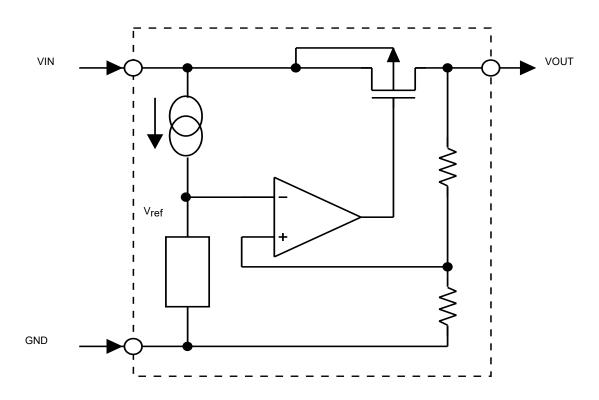
Ordering Information PJ71 Package Type SA: SOT-23 SC: SOT-23-3

Output Voltage

30:3.0V 33:3.3V 36:3.6V

44:4.4V 50:5.0V

Output current tap


K: 30mA

Orderable Device	Package	Reel (inch)	Package Qty (PCS)	Eco Plan Note	MSL Level	Marking Code
PJ71K30SA						П
PJ71K33SA						7477
PJ71K36SA	SOT-23	7	3000	RoHS & Green	MSL1	71XX
PJ71K44SA						XX:Output Voltage
PJ71K50SA						e.g. 30:3.0V
PJ71K30SQ						
PJ71K33SQ						71XX
PJ71K36SQ	SOT-89	7/13	1000/3000	RoHS & Green	MSL1	
PJ71K44SQ						XX:Output Voltage
PJ71K50SQ						e.g. 30:3.0V
PJ71K30SC						
PJ71K33SC						
PJ71K36SC	SOT-23-3	7	3000	RoHS & Green	MSL3	71XXC
PJ71K44SC						
PJ71K50SC						XX:Output Voltage e.g. 30:3.0V

www.pingjingsemi.com Revision: 3.1 Jul-2023

Function Block Diagram

Absolute Maximum Ratings

Ratings at 25°C ambient temperature unless otherwise specified.

Parameter		Value	Unit
Supply Voltage		-0.3 ~ +24	V
	SOT-23	200	mW
Power Dissipation	SOT-23-3 400		mW
	SOT-89	600	mW
Thermal Resistance,Junction-to-Ambient	SOT-23	500	°C/W
	SOT-23-3	300	°C/W
	SOT-89	180	°C/W
Operating Ambient Temperature		-40 ~ +85	°C
Storage temperature range		-65 ~ +125	°C

Electrical Characteristics

(V_{IN}=V_{OUT}+2, C_{IN}=10 μ F, C_{OUT}=10 μ F, T_A=25 $^{\circ}$ C , unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Input Voltage	V _{IN}				24	V
Output Voltage Accuracy	ΔV_{OUT}		-5		+5	%
Output Current	Іоит		20	30		mA
Quiescent Current	IQ	I _{OUT} =0mA		5	9	μA
Dropout Voltage Note1	V _{DROP}	3.0V≤V _{OUT} ≤5.0V, I _{OUT} =1mA		100		mV
Line Regulation	ΔV_{LINE}	V _{IN} =V _{OUT} +2 to 24V,I _{OUT} =1mA		0.2		%/V
Load Regulation	ΔV_{LOAD}	V _{IN} =V _{OUT} +2V,1mA <i<sub>OUT<30mA</i<sub>		60	100	mV

Note 1. The dropout voltage is defined as $V_{IN} - V_{OUT}$, when V_{OUT} is 98% of the normal value of V_{OUT} .

www.pingjingsemi.com 5/9

Revision: 3.1 Jul-2023

Functional Description

Input Capacitor

A 10µF ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended minimum output capacitance is 10µF, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

Thermal Considerations

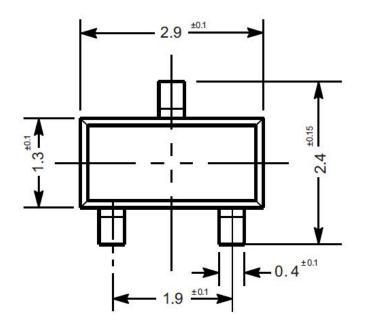
For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

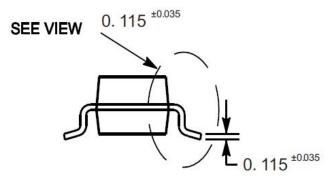
$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / R_{\theta JA}$$

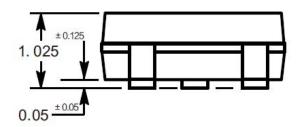
Where $T_{J(MAX)}$ is the maximum operation junction temperature 125 °C, T_A is the ambient temperature and the $R_{\theta JA}$ is the junction to ambient thermal resistance.

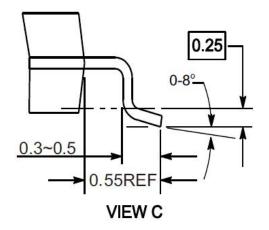
The power dissipation definition in device is:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{Q}$$

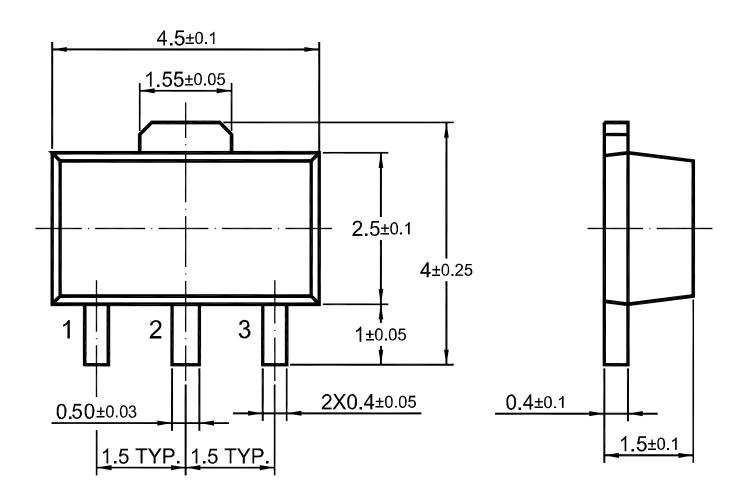

Layout Consideration


By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the PJ71 Series ground pin using as wide and as short of a copper trace as is practical. Connections using long trace lengths, narrow trace widths, and connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

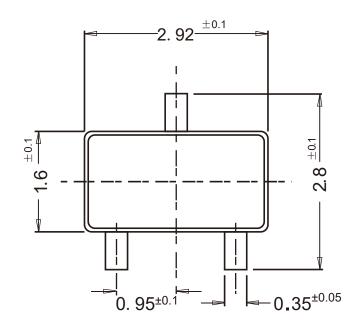


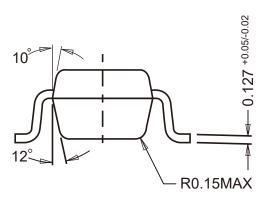

Package Outline

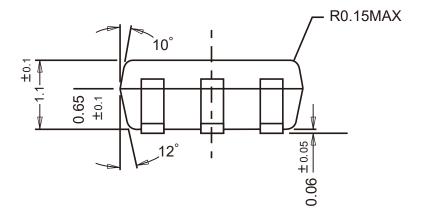
SOT-23 Dimensions in mm



Package Outline


SOT-89 Dimensions in mm





Package Outline

SOT-23-3 Dimensions in mm

